\(\int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx\) [269]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 51 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {a x}{2}-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \cos (c+d x) \sin (c+d x)}{2 d} \]

[Out]

1/2*a*x-a*arctanh(cos(d*x+c))/d+a*cos(d*x+c)/d+1/2*a*cos(d*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2917, 2672, 327, 212, 2715, 8} \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \sin (c+d x) \cos (c+d x)}{2 d}+\frac {a x}{2} \]

[In]

Int[Cos[c + d*x]*Cot[c + d*x]*(a + a*Sin[c + d*x]),x]

[Out]

(a*x)/2 - (a*ArcTanh[Cos[c + d*x]])/d + (a*Cos[c + d*x])/d + (a*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cos ^2(c+d x) \, dx+a \int \cos (c+d x) \cot (c+d x) \, dx \\ & = \frac {a \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} a \int 1 \, dx-\frac {a \text {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {a x}{2}+\frac {a \cos (c+d x)}{d}+\frac {a \cos (c+d x) \sin (c+d x)}{2 d}-\frac {a \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {a x}{2}-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \cos (c+d x) \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.45 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {a (c+d x)}{2 d}+\frac {a \cos (c+d x)}{d}-\frac {a \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {a \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {a \sin (2 (c+d x))}{4 d} \]

[In]

Integrate[Cos[c + d*x]*Cot[c + d*x]*(a + a*Sin[c + d*x]),x]

[Out]

(a*(c + d*x))/(2*d) + (a*Cos[c + d*x])/d - (a*Log[Cos[(c + d*x)/2]])/d + (a*Log[Sin[(c + d*x)/2]])/d + (a*Sin[
2*(c + d*x)])/(4*d)

Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.82

method result size
parallelrisch \(\frac {a \left (2 d x +4 \cos \left (d x +c \right )+\sin \left (2 d x +2 c \right )+4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4\right )}{4 d}\) \(42\)
derivativedivides \(\frac {a \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(55\)
default \(\frac {a \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(55\)
risch \(\frac {a x}{2}+\frac {a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}+\frac {a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}+\frac {a \sin \left (2 d x +2 c \right )}{4 d}\) \(86\)
norman \(\frac {\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+a x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {a x}{2}-\frac {a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {2 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(132\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/4*a*(2*d*x+4*cos(d*x+c)+sin(2*d*x+2*c)+4*ln(tan(1/2*d*x+1/2*c))+4)/d

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.18 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {a d x + a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 2 \, a \cos \left (d x + c\right ) - a \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + a \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{2 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(a*d*x + a*cos(d*x + c)*sin(d*x + c) + 2*a*cos(d*x + c) - a*log(1/2*cos(d*x + c) + 1/2) + a*log(-1/2*cos(d
*x + c) + 1/2))/d

Sympy [F]

\[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=a \left (\int \cos ^{2}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)*(a+a*sin(d*x+c)),x)

[Out]

a*(Integral(cos(c + d*x)**2*csc(c + d*x), x) + Integral(sin(c + d*x)*cos(c + d*x)**2*csc(c + d*x), x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.12 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a + 2 \, a {\left (2 \, \cos \left (d x + c\right ) - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{4 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/4*((2*d*x + 2*c + sin(2*d*x + 2*c))*a + 2*a*(2*cos(d*x + c) - log(cos(d*x + c) + 1) + log(cos(d*x + c) - 1))
)/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.71 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {{\left (d x + c\right )} a + 2 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - \frac {2 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, a\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/2*((d*x + c)*a + 2*a*log(abs(tan(1/2*d*x + 1/2*c))) - 2*(a*tan(1/2*d*x + 1/2*c)^3 - 2*a*tan(1/2*d*x + 1/2*c)
^2 - a*tan(1/2*d*x + 1/2*c) - 2*a)/(tan(1/2*d*x + 1/2*c)^2 + 1)^2)/d

Mupad [B] (verification not implemented)

Time = 10.12 (sec) , antiderivative size = 160, normalized size of antiderivative = 3.14 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+2\,a}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}+\frac {a\,\mathrm {atan}\left (\frac {a^2}{2\,a^2-a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {2\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^2-a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d} \]

[In]

int((cos(c + d*x)^2*(a + a*sin(c + d*x)))/sin(c + d*x),x)

[Out]

(2*a + a*tan(c/2 + (d*x)/2) + 2*a*tan(c/2 + (d*x)/2)^2 - a*tan(c/2 + (d*x)/2)^3)/(d*(2*tan(c/2 + (d*x)/2)^2 +
tan(c/2 + (d*x)/2)^4 + 1)) + (a*log(tan(c/2 + (d*x)/2)))/d + (a*atan(a^2/(2*a^2 - a^2*tan(c/2 + (d*x)/2)) + (2
*a^2*tan(c/2 + (d*x)/2))/(2*a^2 - a^2*tan(c/2 + (d*x)/2))))/d